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a b s t r a c t
Solar energy has recently become a viable option for desalinating seawater, primarily in arid 
regions. However, increasing the productivity of solar still by integrating experimental base 
and modelling methods is still subject to prediction errors; therefore, the main objective of this 
research is to postulate and test boosting algorithms for predicting the efficiency and productiv-
ity of the system. Five boosting regressors were deployed and evaluated: categorical boosting, 
adaptive boosting, extreme gradient boosting, gradient boosting machine, and gradient boost-
ing machine (LightGBM). The proposed regressors are implemented based on the system’s actual 
recorded dataset (consisting of 720 observations). The dataset consists of input variables, which 
are the wind speed (V), cloud cover, humidity, ambient temperature (T), solar radiation (SR), (Tio), 
(Tw), (Tv), and (Tt). Also, the output variable is represented by the productivity of the system. The 
dataset was separated into training (70%) and testing (30%) sets. In order to decrease regressors 
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errors, hyperparameter optimization was employed. GradientBoosting approach provided the best 
prediction, with 95% R2 accuracy and 39.57 root mean square error (RMSE) error. The LightGBM 
technique achieved 94% R2 accuracy and 40.07 RMSE error in the testing dataset. The results reveal 
that GradientBoosting outperforms the cascaded forward neural network in predicting system  
productivity (CFNN).

Keywords:  Solar desalination; Meteorological data; Boosting algorithms; Modelling; Productivity 
evaluation

1. Introduction

Apart from air, water is the most important resource 
that a human being needs for survival. According to pro-
jections, by 2025, eight hundred million people will live in 
regions with absolute water scarcity, and two-thirds of the 
global total may suffer from severe water stress and lack 
access to safe drinking water [1,2]. The problem has been 
exacerbated in recent decades by extreme climate change 
[3,4]: In many places, surface waters have evaporated, and 
humans, animals, and agricultural sectors are competing 
for the rest scarce resources [5]. The spread of waterborne 
diseases such as diarrhea, typhoid, and cholera is facili-
tated by the poor quality of dirty water [6].

Water covers roughly three-fourths of the globe [7] 
but is unevenly distributed. Only 3% of the surface water 
is fresh; the other 90% is in the ocean. Freshwater is found 
in glaciers at 69%, underground at 30%, lakes, rivers, and 
swamps at less than 1% [8–10]. Water scarcity occurs when 
there are insufficient water resources to meet current 
and projected demand from all sectors, whether due to a 
sharp drop in supply, an increase in demand, population 
increase or changes in consumer behavior, or institutional 
factors [11–13].

Reportedly, nearly one-fifth of the world’s population 
lives in water shortages, while another one-quarter lives 
in areas of economic water scarcity. In the last century, 
water use has increased at a rate of more than double that 
of population growth. In comparison, the rapid increase 
in global population and acceleration in global economic 
activity leads to enhanced consumption of clean energy and 
finite natural resources, such as water [14]. Desalination 
techniques have become an extremely popular choice for 
new water supplies in coastlines regions, with various 
advanced desalination technologies such as reverse osmo-
sis (RO) [15–17], multi-stage flashing (MSF) [18,19], thin 
film desalination [20,21], multi-effect evaporation electro-
dialysis [22,23], humidification dehumidification [24,25], 
and solar stills [1,26] have been the most widely used 
process for this purpose.

However, various advanced technology desalination 
techniques using fossil fuel or electrical energy derived 
from fossil fuel are used worldwide, for example, either 
the thermal or the membrane process [11,27,28]. Which 
directly affects global warming and has high economic 
costs. Nevertheless, the massive shortage of fossil fuel 
resources, crude oil, and energy resources is attributed to 
the increasing tendency to replace expensive energies with 
renewable ones [29]. However, for remote areas that lack 
fresh water, the land is available at a low cost and is blessed 
with abundant solar radiation, so solar energy is preferred 
as an alternative energy source. Solar still desalination is 

a sustainable tool for freshwater production with a cheap 
and simple method using sunshine to provide drinking 
water, and its environmentally safe outcome is the major 
attraction point to research [30,31].

Consequently, solar radiation may be a viable source of 
renewable energy for seawater desalination in sandy deserts 
and semi-arid provinces where fossil fuels are also scarce 
and expensive. [2]. Solar distiller, on the other hand, is one 
of the efficient environmentally systems used for small-scale 
applications and is described by the easiness of operation 
and low construction and maintenance costs for providing 
drinking water, — especially in arid and semiarid regions. 
Their safe environmental outcome is the main attraction 
for research [32,33].

Modeling methods were used more extensively than 
experimental methods because they have benefits, no oper-
ational expenses, less time consumption, and higher reliabil-
ity. According to the publications, various researchers have 
produced numerous efforts to improve the productivities of 
solar stills by implementing differing theories and improve-
ments using experimental methods [5,16,40,27,32,34–
39], while others used modelling methods [2,41–45]. 
Meanwhile, modelling including mathematical, machine 
learning [5,16,36,37,40,46–49].

Sadeghi et al. [50] and Das & Debnath [51] has developed 
different machine learning models to predict the tempera-
ture of the solar system. The developed models achieved a 
0.9 mean relative percentage error. Another study done by 
Das & Debnath [51] and Sadeghi et al. [52] implemented to 
predict the thermal characteristics of the solar collector by 
using artificial neural networks (ANNs). He found that the 
multi-layer perceptron (MLP) model made a more accurate 
prediction of the collector performance than other tested 
models. Sadeghi showed that the multivariate regression 
splines (MARS) method has highly promising accuracy in 
predicting thermal properties of solar systems compared 
with other statistical methods such as the M5Model tree 
(M5MT) [53–55]. In addition, gene-expression program-
ming (GEP) and evolutionary polynomial regression (EPR) 
methods were implemented to estimate the thermal energy 
from the solar cell and found that the GEP method is reli-
able and trustworthy and can be conveniently employed 
to estimate varied factors of still solar systems [56,57]. 
However, the mathematical models’ precision is doubtful, 
particularly in handling highly unpredictable SR [58].

Researchers are looking for alternative techniques to 
overcome the limitations and throwback models for pre-
dicting the performance of solar still using climatic factors 
data, which would include the daily (T), (SR), cloud cover, 
(V), and wind patterns, as well as other operating parame-
ters such as (Tio), (Tw), (Tv), and (Tt) [59–61]. In addition, the 
Boosting models showed reputable performance in other 
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research fields [62–64]. According to the literature and the 
authors’ knowledge, few studies have been conducted to 
evaluate the prediction performance of boosting models in 
this research area.

As a result, this research article aims to evaluate the 
prediction performance of the five new Boosting mod-
els in estimating the water productivity from the solar still 
system. This model’s ability to anticipate efficiency while 
accounting for uncertainty highlights its distinctiveness. 
In this work, three months of experimental records were 
analysed. The proposed model’s results were compared 
to the results of the cascaded forward neural network 
model to demonstrate its superiority (CFNN) [65].

2. Experimental set-up

(GMI) the company manufactures the entire system, 
including the solar stills. The instrumentation is divided 
into the saline water barrel and the solar still. The system 
was located at a 30° angle with the horizontal, as shown 
in Fig. 1; the main design details can be seen in Abujazar 
et al. [28].

The inclined stepped solar still has internal dimen-
sions of L 1.8 m, W 1.2 m, and H 0.20 m and is made up of 
28 trays with 0.6 m height and 1.2 m length. Copper sheets 
were used to make the trays. The trays were placed in a 
stainless-steel box insulated with sawdust; the sawdust 
layer was 6 cm thick from the system’s sides and bottom. 
The solar still was designed with a smaller footprint and a 
more effective evaporation area [28].

The system has a lower footprint and a more sig-
nificant positive evaporation area. The system receives 
seawater from a barrel in black colour, gravity fed, and well- 
ordered with a water level sensor to control the water level 
at 3cm inside the trays. When SR reaches the glass cover, 
evaporation occurs and precipitates in the glass cover.

2.1. Experimental procedure

The system was designed, assembled, and evaluated 
outside Engineering and Built Environment department, 

Universiti Kebangsaan Malaysia, Malaysia (Latitude 
2.939671°N and Longitude 101.78784°E) during this study, 
which lasted 12 h each day, from 8:00 morning to 19:00 eve-
ning time, for twelve runs ( at 5 d/run) across three months, 
from September 27th to December 23rd, 2016. Because the 
climate profile in a tropical climate is practically steady 
throughout the year, a little deviance of the key responses 
(SR, T and humidity) is predictable for the further time 
through the year [66]. Furthermore, various periods of desali-
nation research have been carried out by scientists, Ismail 
[67] carried out a 6-d open-air experiment, while Ismail 
et al. [68] used a 14-d laboratory experiment. While Hanson 
et al. [37] integrated basin solar still with a sandy heat 
reservoir was tested in Iranian climatic conditions for 3 d.

During the experiments, various data were recorded. 
These parameters were SR, Tio, Tv, Tw, and Tb. The measure-
ments are taken every hour, as well as the collected fresh-
water productivity. Other meteorological parameters, such 
as T, humidity, V, and cloud cover, were obtained from 
the “AccuWeather” climatological internet page. [69]. All 
experimental data were taken to assess the achievement of 
system Bangi, Selangor, Malaysia metrological condition.

The stepped solar still studied in this research has 
proven productivity almost reached 4.4 L/m2·d, with high-
est production rate comparing with other research work 
produced (1.27, 1.37, 1.4, 1.65 L/m2·d) [70], (2.87, 3.55, 3.93, 
3.23 L/m2·d) [71].

The productivity of the system stays high throughout 
the day, which refers to the high thermal capacity of the 
copper trays material inside the system

The system studied in this research has proven hugely 
successful in producing fresh drinking water in accor-
dance with WHO standards and Malaysia’s NDWQS. The 
inclined solar still was efficient in removing physicochem-
ical and biological contaminations, where it produced 
distilled water free from 99.98% TDS, 99.7% TSS, 100% 
salinity, 99.98% electrical conductivity, 98.96% turbidity, 
99.98% Cl−, 99.98% Na+, 99.94% Mg2+, 99.98% SO4

2−, 99.87% 
Ca2+, and 99.94% K+, 43.56% BOD, and 99.6% NH3–N as 
shown in published articles [1,28,32].

Fig. 1. Inclined system with the main components.
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2.2. Measuring system

A small open space was opened at the corner of the 
system to install the thermocouples for monitoring tem-
perature differences at various places by a Thermocouple 
Maltec-T device (Type-K). As indicated in Fig. 2, the sen-
sors are put in various locations to monitor various tem-
perature points. A device of Tenmars TM-750 sensor for 
measuring SR, and data are collected using a data recorder 
(OHKURA). Water flows through gravity forces, regulated 
by an electronic valve coupled with a water sensor.

3. Modelling of the system’s productivity

Modelling, utilized to examine system behavior and 
optimize its components for improved performance, is sig-
nificant during solar system design. This work employed 
five boosting algorithms to forecast the system produc-
tivity: categorical boosting (CatBoost), adaptive boosting 
(AdaBoost), extreme gradient boosting (XGBoost), gradient 
boosting, and LightGBM. Boosting algorithms are ensemble 
learning methods that encompass a family of methods [72].

3.1. Adaptive boosting

This is the first practical Boosting algorithm created by 
Freund and Schapire [73]. AdaBoost was created based on 
generating a robust model by combining many weak mod-
els [74]. AdaBoost creates an initial decision tree-based 
model with equally weighted samples for each leaf. The 
weak models are created iteratively until maximum accuracy 
is obtained, with fewer errors than the previous one [75].

3.2. Categorical boosting

It is a gradient boosting decision tree (GBDT) approach 
that can handle categorical data to reduce overfitting. 
CatBoost was presented by Dorogush, Ershov, and Gulin 
(2018). While CatBoost performs well with categori-
cal features, the efficiency of the model increases in the 
absence of categoric features [76,77].

3.3. Gradient boosting machine

Gradient boosting machine (GBM) was proposed by 
Friedman in 2001. GBM, an ensemble algorithm, where 
many decision trees are trained sequentially. GBM is an 
iterative ensemble procedure used in supervised machine 
learning tasks such as classification and regression [78,79]. 
GBM can be used for regression analysis if the target is 
continuous data and for classification if the target is cate-
gorical data. The model generates binary trees to improve 
the performance of the previous one by eliminating 
errors [80]. GBM has significantly succeeded in various 
machine learning and data mining problems [81].

3.4. Extreme gradient boosting

XGBoost was described as a scalable end-to-end tree 
boosting system by Chen and Guestrin in 2016. XGBoost 
expresses an efficient implementation of gradient boost-
ing principles [82]. XGBoost supervises learning challenges 

such as classification and regression [83]. The most signif-
icant factor behind the success of XGBoost, is the practical 
usage of computing resources and processing speed [74].

3.5. LightGBM

LightGBM is an open-source algorithm based on the deci-
sion tree algorithm developed by Microsoft [84]. LightGBM 
is used for ranking, classification, and regression problems. 
LightGBM includes gradient-based one-side sampling 
(GOSS) and exclusive feature bundling (EFB) techniques to 
deal with large numbers of data samples and large numbers 
of features [85]. LightGBM uses histogram-based algorithms 
to reduce memory consumption and significantly speed up 
the training process. Unlike other algorithms, LightGBM 
stands out with its leaf-wise growth strategy instead of 
checking the previous ones for each new leaf. LightGBM 
can process big data with higher efficiency and lower false 
error rates [86,87]. In several studies, it has been shown 
that LightGBM has a significantly better performance and 
much better accuracy compared to other methods [88,89].

3.6. Proposed boosting algorithms model

This research effort employed based on metrological 
data of Malaysia to highlight the potential benefit of these 
5 Boosting suggested models Fig. 3 presents the location of 
the study area to highlight the potential benefit of these 5 
Boosting suggested models. The dataset was created using 
meteorological data and displaying Malaysian weather 
hourly from 7 a.m. to 8 p.m. from September 27th to 
December 23rd, 2016.

The established dataset includes the nine explanatory 
factors: (V), cloud cover, humidity, (T), (SR), (Tio), (Tv), (Tw), 
and (Tt). In addition, the dependent factor was the produc-
tivity of solar still. The Box and Whisker plots for the pro-
ductivity factor and explanatory factors are represented in 
Figs. 5–7, exhibiting the first, second (median), and third 
quartiles with minimum and maximum values. Figs. 4–6 
display a considerable fluctuation for the chosen factors 
during the day’s hours, either in the morning, noon, or eve-
ning. The higher variations in the productivity of solar still 
may be attributed to the high fluctuations in all selected 
meteorological factors, especially in the morning and noon. 

Fig. 2. Position of different points for measuring temperature 
variations.
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In contrast, the data shows autocorrelation between the 
factors and productivity, which means the productivity 
values change similarly with some factors such as ambient 
temperature T, and solar radiation SR.

The formerly developed dataset, which included nine 
explanatory factors and one dependent variable with 
720 samples, was used to develop the prediction mod-
els based on the 5 machine learning methods. The Google 
Collab platform was utilized to develop the five models. 
The methods were developed as follows:

3.6.1. Dataset pre-processing

Both explanatory and dependent variable datasets were 
split into two sets, 70% for training (504 samples) and 30% 
for testing (216 samples). Due to the collected dataset being 
measured at fixed time intervals, the “TimeSeriesSplit” 
function from Sklearn library is employed to divide the 
data instead of the classic data split methods.

3.6.2. Model developments

Different boosted trees were implemented to fit the 
models. The models’ performance is enhanced by apply-
ing hyperparameters optimization. In addition, an opti-
mizer applied on the number of boosted trees (from 1 to 
100) to check the performance of each boosting method. 
The number of boosted trees were CatBoost (35), AdaBoost 

(50), XGBoost (35), GradientBoosting (100), LightGBM (30). 
The early stopping was enabled to prevent the training 
processing from the complexity.

3.6.3. Model testing

Both training and testing dataset were used to pre-
dict productivity using the 5 methods; then, the estimated 
data obtained are compared to the measured data. Various 
evaluation metrics such as root mean square error (RMSE), 
R2, mean absolute error (MAE), median absolute error 
(MedAE), and mean squared error (MSE) were calculated 
to compare the methods.

After employing 5 boosting algorithms, the best mod-
els accuracies are shown in Table 1 and Fig. 7. The table 
presents the errors and accuracies of training and testing 
datasets for the 5 Boosting methods. GradientBoosting 
and LightGBM methods achieved the best model. 
GradientBoosting showed 95% R2 accuracy and 39.57 RMSE 
error in the testing dataset. LightGBM algorithm demon-
strated 94% R2 accuracy and 40.07 RMSE error in the test-
ing dataset. The results of GradientBoosting method indicate 
that this method performed very well in the application of 
modelling the productivity of solar still. XGBoost method 
showed the worst performance among the models, with 
91% R2 accuracy and 49.62 RMSE error over the testing 
dataset. Although the AdaBoost algorithm showed a rel-
atively good R2 accuracy of 93%, their RMSE error (44.28) 
is less compared with GradientBoosting regressor (39.57).

Fig. 3. Location of the case study.
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Fig. 4. Explanatory factors: wind speed, cloud cover, humidity, ambient temperature, solar radiation.

Fig. 5. Explanatory factors: Tio, Tv, Tw and Tt.
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Fig. 6. Dependent factor is the productivity of solar still.

Fig. 7. Compression between measured and predicted solar still productivity by five boosting models based on the testing datasets.

Table 1
Statistical errors of CatBoost, AdaBoost, XGBoost, gradient boosting, and LightGBM regressors in the prediction of the yield 
of solar still

Methods Dataset CatBoost AdaBoost XGBoost GradientBoosting LightGBM

RMSE
Training 6.55 34.07 27.35 16.13 13.59
Testing 41.51 44.28 49.62 39.57 40.07

R2 Training 1.00 0.96 0.97 0.99 0.99
Testing 0.94 0.93 0.91 0.95 0.94

MAE
Training 4.77 27.42 18.05 10.92 8.58
Testing 25.61 32.06 32.69 25.84 26.14

MedAE
Training 3.40 20.30 10.70 6.95 4.98
Testing 13.88 19.12 18.64 17.18 16.23

MSE
Training 42.85 1,160.67 748.23 260.17 184.67
Testing 1723.40 1,960.87 2,461.63 1,565.82 1,605.60

MAPE
Training 0.14 1.06 0.42 0.20 0.14
Testing 0.27 1.09 0.66 0.32 0.30

Bold values identifies the lowest model errors.
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In general, the GradientBoosting method is more accurate 
in estimating the system’s yield than the CatBoost, AdaBoost, 
XGBoost, and LightGBM methods.

A scatter plot of the testing datasets utilizing the 
5 regressors is shown in Fig. 8. The scatter plot shows the 
relationship between the measured estimated and pro-
ductivity based on 5 regressors. The dots distribution 
shows a strong positive and linear relationship between 
the measured estimated and productivity. Most of the dots 
appear around the diagonal line, representing the perfect 

prediction of still productivity. Although the scatter plots 
contain outliers, these values are almost fixed between 
the five methods. The fixed position of outliers could be 
attributed to the model error margin or the measurement 
process during the experiments.

Fig. 9 demonstrates the influence of the 9 independent 
factors on the productivity prediction of solar still based on 
the CatBoost, AdaBoost, XGBoost, GradientBoosting, and 
LightGBM regressors. All models show that the solar radi-
ation factor is the most influencing factor. In addition, three 

Fig. 8. Scatter plots show the differences between the measured and estimated productivity for the five models: CatBoost, 
AdaBoost, XGBoost, gradient boosting, and LightGBM. 
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factors: Tio, Tv, and Tw showed a very significant influence 
on the dependent variables. In addition, the ambient tem-
perature, humidity, and Tray’s water temperature factors 
showed less influence. The wind speed and cloud cover 
variables were less important.

According to the former research works, Abujazar 
et al. [65], have implemented cascaded forward neural 
network (CFNN) as a machine learning method to pre-
dict the yield of the solar system. The CFNN method 
demonstrated 41.01 RMSE error, while our models using 
GradientBoosting regressor showed 39.570 RMSE error and 
high accuracy in predicting the solar still productivity.

4. Conclusion

In this work, five boosting strategies were developed, 
and their prediction performance was evaluated: categorical 
boosting (CatBoost), adaptive boosting (AdaBoost), extreme 
gradient boosting (XGBoost), gradient boosting machine 
(GBM), and gradient boosting machine (LightGBM). 
The solar still productivity from an inclined stepped solar 
still system was projected using boosting approaches. The 
recorded dataset was hyper-parameter adjusted using 
the hold-out validation method, with 70% of the dataset 
allocated for training and 30% for testing. Cloud cover V, 
humidity, T, SR, Tio, Tv, Tw, and Tt were the input variables 
for the five models. Six accuracy or statistical error mea-
sures were used to evaluate the constructed regressors: 
RMSE, R2, MAE, MedAE, MSE, and mean absolute per-
centage error (MAPE). According to the results, the best 
prediction was achieved using the GradientBoosting regres-
sor, which demonstrated 95% R2 accuracy and 39.57 RMSE 
error. The LightGBM regressor had 94% R2 accuracy in the 
testing dataset and a 40.07 RMSE error.

In general, the boosting strategies produced better 
results and lower error rates while developing productivity 
prediction models for solar still. This investigation shows 

that the GradientBoosting approach worked well in pre-
dicting solar still yield.

Abbreviations

RMSE — Root mean square error
R2 — Coefficient of determination
MSE — Mean squared error
MedAE — Median absolute error
MAPE — Mean absolute percentage error
MAE — Mean absolute error

Symbols

V — Wind velocity, m/s
SR — Solar radiation, W/m2

Tw — Water temperature, °C
Tg — Glass temperature, °C
Tb — Basin Temperature, °C
Ta — Ambient temperature, °C
Tio — Glass inner and outer cover temperatures, °C
Tv — Vapour temperature, °C
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